ميكانيك ظ„ط§ط؛ط±ط§ظ†ط¬ Lagrangian mechanics عبارة عن إعادة صياغة للمكيانيك الكلاسيكي قدمه جوزيف لويس لاغرانج عام 1788. في ظ…ظٹظƒط§ظ†ظٹظƒ لاغرانج ، مسار الجسم يشتق بإيجاد المسلك الذي يقلل الفعل action ، و هو مقدار يعتبر تكامل لكمية ندعوها لاغرانجي Lagrangian على الزمن . اللاغرانجي بالنسبة للميكانيك الكلاسيكي يعتبر الفرق بين الطاقة الحركية و الطاقة الكامنة .
هذا الموضوع يبسط بصورة كبيرة الكثير من المسائل الفيزيائية . مثلا كرة صغيرة في حلقة . إذا قمنا بالحساب على أساس الميكانيك النيوتني ، سيحصل المرء على مجموعة معقدة من المعادلات التي ستأخذ بعين الاعتبار القوى التي تؤثر بها الدوامة على الكرية في كل لحظة .
نفس هذه المسألة تصبح أسها باستخدام ميكانيك لاغرانج . حيث ينظر المرء إلى جميع الحركات الممكنة التي تقوم بها الكرية على الدوامة و يجد رياضيا الحركة التي تقلل الفعل إلى ادنى حد . بالتالي يكون لدينا عدد أقل من المعادلات لأنها لا تمثل حسابا مباشرا لتأثير الدوامة على الكرية عند كل لحظة .
معادلات لاغرانج
لنعتبر جسيما مفردا ذو كتلة m و شعاع موضع r . تطبق عليه قوة F ، يمكن عندئذ أن نعبر عن هذه القوة على أنها تدرج تابع الطاقة الكامنة القياسي (V(r, t:
مثل هذه القوة تكون مستقلة عن المشتق الثالث أو المشتقات الأعلى رتبة لشعاع الموضع r ، لذا فإن هذه قانون نيوتن الثاني يشكل مجموعة من ثلاث معادلات تفاضلية نظامية من الرتبة الثانية .
لذا فإن حركة هذا الجسيم يمكن وصفها بدلالة متغيرات مستقلة أو ما يدعى " درجات حرية " . درجات الحرية هذه هي مجموعمة من ستة متغيرات :
{ rj, r′j | j = 1, 2, 3},
المركبات الديكارتية لشعاع الموضع r و مشتقاته الزمنية ( مشتقاته بالنسبة للزمن ), في لحظة زمنية معينة أي أن الموضع (x,y,z) و السرعة بمكوناتها الديكارتية الثلاثة :
((vx,vy,vz ) ).
بشكل أعم ، يمكننا العمل ضمن جملة إحداثيات معممة
, qj, مع مشتقاتها الزمنية ، أو ما يدعى بالسرع معممة ، q′j.
يرتبط شعاع الموضع r مع الإحداثيات المعممة عن طريق جملة معادلات تحويل
خطأ رياضيات (خطأ في الصيغة): mathbf{r} = mathbf{r}(q_i ، q_j ، q_k, t).
فمثلا من أجل نواس بسيط ذو طول l ، يكون الخيار المنطقي للإحداثيات المعممة هو زاوية النواس التي يصنعها مع خطه الشاقولي ( العمودي ) ، θ,
و تكون معادلات التحويل :
.
مصطلح إحداثيات معممة أحد بقايا فترة استخدام الإحداثيات الديكارتية كنظام إحداثيات افتراضي .
لنعتبر الإزاحة الإعتبارية للجسم δr فيكون العمل المنجز من قبل القوة F هو :
δW = F · δr.
باستخدام قانون نيوتن الثاني يمكننا أن نكتب :
بما أن العمل كمية فيزيائية قياسية ( كمية و ليست شعاعية ) يمكننا إعادة كتابة هذه المعادلات بدلالة الإحداثيات المعممة و السرع على الجانب الأيسر .
عملية تنسيق الجانب الأيمن أكثر صعوبة لكن بعد الترتيب و التبديل :
حيث هي الطاقة الحركية للجسيم T = 1/2 m r′ 2 . و معادلة العمل المنجز ستصبح بالشكل :
على أي حال ، فإن هذا يجب أن يكون صحيحا بالنسبة لأي مجموعة من الإزاحات المعممة δqi, لذا يكون لدينا :
من أجل أي من الإحداثيات المعممة δqi.
يمكننا أن نبسط هذه المعادلة بملاحظة V أن هو تابع ل r و t, و شعاع الموضع r تابع أيضا للإحداثيات المعممة و الزمن t لذا فإن الطاقة الكامنة V تكون مستقلة عن السرع المعممة
بإدخال هذا في المعادلة السابقة و استبدال L = T – V نحصل على معادلات لاغرانج :
هناك دوما معادلة لاغرانج وحيدة لكل إحداثي معمم qi. و عندما يكون qi = ri (أي أن الإحداثيات المعممة هي ببساطة إحداثيات ديكارتية ), عندئذ نستطيع بسهولة اختزال معادلة لاغرانج إلى قانون نيوتن الثاني.
الاشتقاق أعلاه يمكن تعميمه على نظام (جملة) مؤلفة من N جسيم. عندئذ يكون هناك 6N إحداثي معمم يرتبطان بإحداثيات الموضع عن طريق معادلات التحويل الثلاثية 3N . في معادلات لاغرانج 3N يكون دوما T هو الطاقة الحركية الكلية للجملة ، و V الطاقة الكامنة الكلية .
عمليا من الأسهل حل المسألة ياستخدام معادلة اويلر-لاغرانج بدلا من قوانين نيوتن . ذلك لأن الإحداثيات المعممة qi يمكن اختيارها لتلائم تناظرات النظام .